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Abstract

The reliable theory of the evolution of heavy stars predicts the exis-
tence of a type of neutron stars which accrete a cloud of dirty hydrogen
(accretors). Although they are very small (some hundreds of kilometres),
the accretors should be easily observable because the accretion raises the
surface temperature over 1 000 000 K, but they are never detected.

The reason of this failure is a misunderstanding of the spectroscopy of
hydrogen crossed by a powerful beam of short wavelengths light.

Except very close to the surface, hydrogen is mostly heated by a Lyman
absorption improved by a parametric frequency shift due to excited atomic
hydrogen, so that this absorption stabilises the temperature between the
limits of ionisation and dimerisation. A powerful radio emission may
produce an extra ionisation where the pressure allows a good electrical
conduction.

The combination of Lyman absorptions and redshifts produces an in-
stability which chains Lyman absorption patterns: when a redshifted Ly-
man absorbed line coincides with an other Lyman line of the gas, all
absorption lines of the gas are written into the spectrum.

Thus all characteristics of the complex spectrum of a quasar are gen-
erated, so that observed accretors are named quasars, and the origin of
the intrinsic redshifts is found.

The lack of redshifts of the variations of luminosity of stars and quasars
shows that the “cosmological redshifts” result from the parametric fre-
quency shift, so that the universe does not expand.

Introduction

The parametric light-matter interactions play a big role in laser and microwave
technologies, allowing, for instance, to add, multiply or split frequencies. These
interactions are space-coherent, so that they do not blur the images, and they
do not change the states of the involved molecules. Although the refraction is a
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parametric effect, and all interactions start by a parametric effect, the fugacity
of the parametric exchanges of energy with matter leads to neglect these effects
using usual incoherent light. Therefore, it appears useful to explain simply
in the next section, without the trivial computations, the parametric effects
which produce frequency shifts, in particular the “Coherent Raman Effect on
Incoherent Light” (CREIL) [, 2, B, B, [.

Hydrogen is the main component of the Universe, and the spectroscopy of
small amounts of this gas is well known. But, in the Universe, long paths allow
the observation of effects which are forbidden at usual pressures. In particular,
strong CREIL frequency shifts are produced by atomic hydrogen if its principal
quantum numbern is low, but larger than 1. Section B shows that this property
induces an instability which produces a forest of absorption lines.

Section Ml studies the variations of pressure and temperature in a cloud sur-
rounding a small, heavy, extremely hot object, and the consequences of these
variations on the spectrum emitted by the system.

Section Bl shows that a lot of observations is more easily understood using
CREIL than using the standard theory.

1 From refraction to other parametric light-matter
interactions.

1.1 Recall of the analytic theory of refraction.

Huygens explained the propagation of the light in the vacuum (fig. 1) supposing
that all points of a wave surface A scatter the light coherently that is are
sources of wavelets whose envelope is a new wave surface. The coherence of
the scattering requires that all points on a wave surface radiate with the same
phase, and here this phase is supposed equal to the phase of the incident wave.
A retrograde wave is eliminated taking into account the volume scattering: the
paths from the source to point a or an other scattering point ¢, plus the path to
b are equal, while they differ to d, producing, in the volume of the scattering, a
cancellation for a backward propagation.

In matter, the molecules' scatter the light, (fig. 2 ), so that, provided that all
molecules produce the same phase shift, a Huygens’ construction may be added
to the regular one, producing a second wave surface D. However the number
of molecules is finite, Huygens construction is not perfect, so that it exists an
incoherent scattering, making, for instance, the blue of the sky. In the whole
paper this incoherent scattering is neglected.

If the medium is transparent, the scattered wave is late of pi/2. As the wave
surfaces are identical for the incident and scattered waves which have the same
frequency, the waves interfere into a single, late, refracted wave.

The emission of the scattered wavelets and wave surface D requires a dynam-
ical excitation of the molecules whose amplitude must be proportional to the

I"This word is used for mono- or polyatomic molecules, and, more generally for any set of
atoms able to scatter the light.
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Figure 1: Huygens’ construction.
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Figure 3: Refraction of a pulse of light.

exciting amplitude to obtain an index of refraction independent on the inten-
sity. Thus, an energy proportional to this intensity is absorbed by the refracting
molecules, and, as we have assumed that the medium is transparent, this energy
is returned coherently to the wave (fig. 3).

1.2 Global, quantum theory of parametric interactions.

Remark that only a part of an incident energy hv is shared among all molecules
of a prism, but that this sub-quantum splitting of the energy is allowed by
quantum mechanics, the mode of the light beam and the prism making a single
system. In this this representation, there is not a virtual scattering of the light
followed by an interference with the incident beam, but a transformation of the
beam.

Suppose that all Nmolecules of the refracting medium are identical and in the
same, nondegenerate state (else, the effects add). In the dark, the degeneracy
of the set of N molecules is N. A light beam perturbs the degenerate state,
mixing it with other states, breaking the degeneracy. The polarisation state
which appears, having got energy from the light beam, and able to return it, is
characterised by a quantum index which is the mode of the light beam. Remark,
on figure 3, that the energy of the polarisation state depends on the intensity
of the light beam.

If several modes interact with the molecules, several states of polarisation
appear. A parametric interaction may perturb the states, but must not destroy
them, preserving the geometry of the modes in an homogeneous medium and
the stationary states of the molecules after the interaction.
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2 The “Coherent Raman Effect on Incoherent Light”
(CREIL).

2.1 A simple parametric interaction.

In the Coherent Raman Effect on Incoherent Light” (CREIL), the interaction
is a simple transfer of energy between sublevels of polarisation (figure 4). As
these sublevels have the same parity, this interaction requires an intermediate
state.

The interaction must obey the second law of thermodynamics; in the CREIL,
it increases the entropy by a flux of energy from the light modes which have
the highest Planck’s temperature to the modes which have the lowest one. An
increase (resp. decrease) of temperature produces an increase (resp. decrease)
of frequency.

The global theory explains simply the optical mechanism of the parametric
interaction, but a precise study is easier using the analytical representation in
which the resonances correspond to virtual transitions (fig 5) and produce a
scattering (fig 2).

The virtual transitions 1-2 correspond to a virtual Raman effect, transitions
3-4 to a second virtual Raman effect, both Raman effect being simultaneous.

More generally, several beams interact.

2.2 Conditions for a CREIL effect.

The refraction and the CREIL are the simplest examples of the parametric
effects. To avoid a destruction of the states, in particular of the modes of the
light beams, two conditions must be verified:
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Figure 5: A standard representation of the CREIL interaction.

Condition A : The interactions do not change the stationary state of the
molecules, the changes of energy of the molecules being transitory, bound to the
propagation of the light.

Condition B : The interactions are space coherent, so that they do not blur
the wave surfaces and the images deduced from the incident beams.

G. L. Lamb gives a general condition for a parametric effect [6] : “The length
of the light pulses must be shorter than all relevant time constants”.

The parametric effects are widely used with microwave and laser sources,
often with tricks which allow to overcome Lamb’s conditions, allowing to add,
subtract, multiply, split the frequencies of beams; using ordinary incoherent
light appears difficult, with the exception of refraction evidently.

For CREIL, there are two “relevant time constants”, which split condition B:

Condition B1 : The collisions must not introduce phase shifts as they restart
the scattering, except maybe during short times of collision; a restart is unimpor-
tant in the refraction, but not in effects for which a difference between scattered
and exciting frequencies introduces a phaseshift which increases with the time.
The collisional time which depends on the pressure, the temperature and the
nature of the gas is a “relevant time constant”.

Condition B2 : The sum of two sine functions having different frequencies
and the same initial phase is nearly a single frequency sine function whose inter-
mediate frequency is in proportion of the amplitudes, if the time of observation
is too short to allow the appearance of beats. This mathematical property is
verified using laser beams or a Michelson interferometer having a slowly moving



mirror. Usual incoherent light may be considered as made of pulses whose length
is of the order of a few nanoseconds, so that, to get a single frequency-shifted
wave, the period of the quadrupolar (Raman) resonance between the levels G
and R (fig. 5) must not be shorter than the “relevant time constant” of the order
of 2 nanoseconds, corresponding to a frequency of 500 MHz.

The addition of the sine functions into a single one is approximate, leaving a
residual parasitic wave of different frequency which propagates with a difference
of index of refraction An due to the dispersion of the refraction. The corre-
sponding waves radiated at points distant of L along a light ray have a phase
shift 2rLAn/\, where A is the vacuum wavelength; when this shift reaches 7,
these waves cancel, so that the scattered parasitic amplitude remains negligible
while the frequency shifts add all along the path.

2.3 Intensity of the CREIL effect.

A precise computation of the intensity of a CREIL effect may be done using
tensors of polarisability which are often not known. A rough, but general order
of magnitude may be deduced from figures 4 and 5 :

Generally the CREIL transfers energy from the hot modes which are high
frequency (infrared, visible, ultraviolet) to cold modes which are in the thermal
radiation. As the quadrupolar resonance ( between levels R and G ) corresponds
to a low energy, the three levels R, G, M are close, so that the corresponding
virtual Raman effect is resonant, intense, it does not limit the intensity of the
CREIL effect. Thus the amplitude of the scattering which produces the CREIL
is close to the amplitude of the other coherent Raman effect, much larger than
the amplitude of an incoherent Raman effect. Therefore, in despite of the low
frequency of the quadrupolar resonance, the CREIL is not a very small effect.

If the S level is low, the CREIL effect is fully resonant, strong. Therefore, a
CREIL effect inside the low energy radiations leads to a fast thermal equilibrium,
a blackbody spectrum for these radiations.

3 Absorption of a continuous, high frequency spec-
trum by low-pressure atomic hydrogen.

In its ground state (principal quantum number n = 1) atomic hydrogen has
the well known spin quadrupolar resonance at 1420 MHz, too large to provide
frequency shifts by CREIL. In the n = 2 states, the resonances corresponding
to the quadrupole allowed transitions (AF = 1) have the following frequencies:
178 MHz in the 25, /5 state, 59 MHz in 2P ), state, and 24 MHz in 2P3,,. These
frequencies are low enough to allow CREIL, and high enough to produce a strong
CREIL effect. The higher states are generally less populated, their quadrupolar
resonances have lower frequencies, in a first approximation, we may suppose
that only the states n = 2 or 3 are active in CREIL.

The decay of the states excited by Lyman absorptions heats the gas; if
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Figure 6: Absorption by a single line.

the intensity of the light is large, the absorption is strong, many atoms are
ionised, do not absorb anymore, so that the heating is limited, the temperature
of the gas stabilises at a value which depends on the intensity in the Lyman
region. Remark that a frequency shift renews the intensity of the light at the
Lyman frequencies, so that the stabilisation of the temperature works over large
distances.

If the temperature is high enough to populate the excited states, the shifting
is permanent, the lines get the width of the redshift, so large that they cannot
be observed.

Suppose now that the temperature is relatively low (10 000 K), so that the
excited levels are populated by Lyman absorptions ounly(fig 6).

Considering the absorption by the Ly, line, in an homogenous gas, the
population in the excited state n = 2 is constant, so that the redshift is constant,
the absorption too (fig. 6). The absorbed energy is proportional to the product
W of the absorbed intensity Al by the width Av of the absorbed line (neglecting
the natural width of the line compared with Av). Supposing a constant decay
of the excited level, the number of excited atoms is proportional to W = AvAI.
But the redshift Av is proportional to the number of excited atoms, so that AT
does not depend on the incident intensity of light.

Fig 7 shows the result of the absorption of a spectrum by the Lyman « line:
the contrast is increased by the constant absorption while the scale of frequencies
is changed. Fig. 8, top shows a continuous spectrum after an absorption of
the main Lyman lines, and an other absorbed line. During the redshift (fig.
8, low) , the hachured regions are absorbed, but the intensity Al cannot be
absorbed when the previously written line comes on the Ly, line. Therefore,
the redshifting stops until the absorption by the Lyg line is sufficient to restart
it. The absorption of the Lyg line must be larger than the missing absorption
of the Ly, although the line is weaker because this absorption does not produce
a strong CREIL, the quadrupolar frequencies of the n = 3 level being lower
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than the frequencies of the n = 2 level. Therefore, during the stop, all lines,
absorption or emission are strongly written into the spectrum. Remark that
this process works for a previously written emission line because it produces an
acceleration of the redshift, therefore a decrease of the absorptions similar to an
emission.

The process may be started by a line of an impurity, or by a Lyg line written
in a region where the redshift was forbidden. Then, the Lyman patterns are
linked, for instance by a coincidence of the Lyg line of a shifted pattern with
the Ly, line of the gas. The characterisation of the lines, for instance the Lyg
line, by their frequencies may be replaced by the redshift zz . needed to put
their frequencies at the frequency of the Ly, line; thus, the linking of the lines
gives:

_ Vrespy) Va1 1/(3%resp.4?) — (1 — 1/22)
Ve 1-1/22
2(B,a) = 5/27 ~ 0.1852 ~ 3 % 0.0617;
2y = 1/4 = 0.025 = 4% 0.0625.

Z(Bresp.y,a)

Similar to
2(~,8) = 7/108 ~ 0.065.

Notice that the resulting redshifts appear, within a good approximation, as the
products of z; = 0.062 and an integer q. The intensities of the Lyman lines
are decreasing functions of the final principal quantum number n, so that the
inscription of a pattern is better for ¢ = 3 than for ¢ = 4 and a fortiori for
q=1.

Iterating, the coincidences of the shifted line frequencies with the Lyman [
or « frequencies build a “tree”, final values of ¢ being sums of the basic values
4, 3 and 1. Each step being characterised by the value of q, a generation of
successive lines is characterised by successive values of ¢ : ¢1,gs... As the final
redshift is

qr *zp = (q1 + q2 + ...) * 2p,

the addition ¢r = g1 +¢2+ ... is both a symbolic representation of the successive
elementary processes, and the result of these processes. The metaphor “tree”,
is imprecise because “branches” of the tree may be “stacked” by coincidences
of frequencies. A remarkable coincidence happens for ¢ = 10, this number is
obtained by the effective coincidences deduced from an overlapping sequence of
Lyman lines corresponding to the symbolic additions:

10=3+34+4=3+44+3=4+34+3=3+3+3+1=...

g = 10 is so remarkable that z; = 102, = 0.62 may seem experimentally a value
of z more fundamental than zp.

In these computations, the levels for a value of the principal quantum number
n greater than 4 are neglected, for the simple reason that the corresponding
transitions are too weak.
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Figure 9: Building the spectrum of an accretor.

4 Spectrum of the accreting neutron stars.

4.1 Building the spectrum

The theory of the stars is very reliable, although some properties are not well
understood. The theory predicts that having lost a large part of its mass and
of its angular momentum, as it becomes a neutron star, an initially heavy star
may reach a step of its evolution in which it accretes the surrounding gas. The
fall of the gas heats the surface of the star so much that its temperature is over
1 000 000 K. This temperature makes this “accretor” so bright, in particular at
short wavelengths, that, in despite of its small size, it should be easily observed
[2, 8. To solve this problem, study the spectrum of these accretors (fig. 9).
The graph “a” of fig. 9 represents our rough hypothesis about the density of
gas around the star. The gas is far from an equilibrium because it falls fast to
the star. Therefore its density may change much slower than in the hypothesis
of an equilibrium, so that it may emit or absorb strongly light in nearly constant
conditions. We have written that the scales are logarithmic to indicate that the
scale of pressure is far from being linear : a millimetre may represent less than
a metre at the left, and a parsec at the right. At a long distance, the density is
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supposed nearly constant, corresponding to a cloud of gas. To make the theory,
we suppose that the gas is nearly pure hydrogen, the impurities being only able
to produce emission or absorption lines. We have indicated a region in which
the density has the order of the density in the discharge tubes, so that the gas
may be ionised by radio frequencies.

The graph “b” represents our hypothesis about the temperatures of the gas
and the temperature of the light. The Planck’s temperature of the light at a
point depends on the frequency, but we suppose that, except for spectral lines
it may be considered independent on the frequency at a point, decreasing with
the distance.

Very close to the star, the gas is strongly heated by its compression and
by electrons issued from lower regions. This heating stops quickly, so that it
remains only a radiative heating which stabilises relatively the temperature:
close to the star the temperature is high, a large quantity of hydrogen is ionised
into protons and electrons which do not absorb much energy, the temperature
drops fast. Very far, it does not remain much energy for a Lyman absorption,
the temperature drops, molecular hydrogen appears (graph “c”).

On graph “d”, we suppose that a strong radio emission ionises the gas so that
atomic hydrogen which appeared as the temperature decreased is destroyed at
pressures of the order of 100 Pa.

Graph “e” shows how the spectrum builds:

Very close to the star (column A), all atoms are ionised. The strong lines
are intense, therefore wide, but reabsorbed, so that the weak (forbidden) lines
may appear stronger and sharper. The fall of the gas adds a Doppler redshift
to the CREIL redshift which is locally slightly decreased by the Doppler effect
on the quadrupolar resonance.

In column B, atomic hydrogen appears, it is strongly excited by the collisions,
so that it redshifts the light. All lines are shifted while they are emitted, they
are so wide that they cannot be seen : there is a gap in the redshifts z.

In columns C-E, if there is no radio emission, the thermal excitation of atomic
hydrogen disappears, so that the periodicities described in the previous section
appear. At the beginning there are emissions, then absorptions. At relatively
high pressures, the hydrogen is quickly de-excited, so that the absorptions are
relatively strong, the lines are saturated. Close to the centre of the lines, the
saturation equilibrates the temperature of the light with the temperature of
the gas, so that the lines get the shape of a hat in emission, of a trough in
absorption. At these pressures, the gas is easily ionised by radiofrequencies, so
that these characteristic broad lines do not appear.

At a longer distance, the lines become sharp. There is a large probability
that the atomic hydrogen disappears while the redshift is stopped, so that it is
not only the variations of redshifts, but the redshifts themselves that are integer
multiples of zp.

The previous description may be slightly changed, in particular because the
relation between the scales of density and temperature depends on the mass of
the star and the density of the cloud.
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4.2 OQObservation of the star

We have described a very complicated spectrum which is just the spectrum of
a quasar, explaining all its particularities:

* As the cloud was generated by an old star, it may contain heavy elements;

* Supposing that the relative frequency shifts Av/v are constant, the fine
structure patterns are slightly distorted; the dispersion of the optical constants
in the CREIL shows that the hypothesis is not strict, so that it is not necessary
to suppose that the fine structure constant is a function of the time [9];

* There is a gap in the redshifts after the sharp emission lines [I0];

* The broad lines which have the shape of troughs do no exist if there is a
strong radio emission [T}, [2];

* The observed periodicities |16, 17, 20] are simply produced by the
propagation of the light in atomic hydrogen.

* A large part of the redshift is intrinsic, as found by Halton Arp [13]. Being
not extraordinarily far, the quasars are not huge and powerful objects [14].

The building of so complicated a spectrum which requires so simple hypoth-
esis, and agrees so well with the observations is a proof that:

* The accretors are observed, but called quasars;

* The abundance of atomic hydrogen and the intensity of the CREIL are
sufficient to produce strong intrinsic redshifts; is the “cosmological redshift”
produced by CREIL in the intergalactic space ?

5 Some other applications of the CREIL

The origin of the observed redshifts may be split into CREIL, Doppler and
gravitational, the first one being generally the most important. Therefore, the
CREIL must be taken into account for most observations. The most remarkable
observations are:

A statistical over abundance of very red objects (VROs) is observed in close
proximity to quasars (Hall et al. [ZT], Wold et al. [22]); in particular, the galaxies
which contain quasars are often severely reddened, and redshifted relative to
other galaxies having similar morphologies (Boller [Th]). The quasar produces a
CREIL redshift, providing far ultraviolet radiation and maybe hydrogen around
the VROs.

* The bright and much redshifted objects seem surrounded by hot dust [23],
and it is difficult to explain the existence of this dust in despite of the pressure
of radiation and the abrasion by ions. The blueshift, that is the heating of the
thermal radiation by the CREIL is a simple interpretation of the observations.

* Studying the variations of the frequency shifts on the Solar disk allows
to compute the fractions due to the Doppler effect and to the gravitation. It
remains a redshift proportional to the path of the light through the corona,
immediately explained by a CREIL effect.

* Radio signals were sent from the Earth to Pioneer 10 and 11, at a well sta-
bilised carrier frequency close to 2.11 GHz, and the Pioneers returned a signal af-
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ter a multiplication of the carrier frequency by 240/221. The blueshift which re-
mains after a standard elimination of the known frequency shifts (Doppler, grav-
itation) is interpreted as produced by an “anomalous acceleration” (Anderson et
al. [24]). The CREIL allows to preserve celestial mechanics : Assume that the
solar plasma between these Pioneer probes and the Earth contains molecules
possessing resonances in the megaherz range (either or for instance Lyman
pumped atomic hydrogen). These molecules transfer energy from the solar ra-
diation not only to the thermal radiation but to the radio signals too : Planck’s
temperature of the radio signals is higher than 2.7K to allow a detection, but
much lower than the temperature of the solar radiation. The CREIL requires an
incoherence, that is a high frequency modulation of the light. The emission of
the Pioneers is very weak, quickly mixed with the thermal noise which provides
a modulation. Crucial experiments could be done, studying the variation of the
frequency shift as a function of the modulation, either changed by a variation
of the intensity of the carrier, or changed by a variable, known modulation.

* V. A. Kotov and V. M. Lyuty [25] 26] observed oscillations of the luminos-
ity of stars and quasars with a period of 160,01 mn. While the light is redshifted,
this period is not. Using CREIL, it is clear that the light pulses are redshifted,
but that their starts are not subject to a frequency shift [27]. On the contrary,
supposing a change in the scale of time by an expansion of the universe, this re-
sult cannot be explained. Therefore, thinking that the observations are reliable,
there is no expansion of the universe.

6 Conclusion

Avoiding the use of the CREIL, an elementary optical parametric effect, is never
justified by the supporters of the big bang.

Using this effect to study the spectrum of an accreting neutron star shows a
very complicated spectrum which appears being just a spectrum of quasar. It
cannot be a coincidence, so that the “intrinsic redshifts” are surely produced by
the CREIL.

The lack of redshift of the variations of luminosity observed in stars and
quasars with a period of 160 minutes shows that the “cosmological redshift” is
produced by a CREIL effect, so that there is no expansion of the Universe
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